Generalized Multiple Importance Sampling

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light Transport Simulation via Generalized Multiple Importance Sampling

Multiple importance sampling (MIS) is employed to reduce variance of estimators, but when sampling and weighting are not suitable to the integrand, the estimators would have extra variance. Therefore, robust light transport simulation algorithms based on Monte Carlo sampling for different types of scenes are still uncompleted. In this paper, we address this problem by present a general method, ...

متن کامل

Adaptive Multiple Importance Sampling

The Adaptive Multiple Importance Sampling (AMIS) algorithm is aimed at an optimal recycling of past simulations in an iterated importance sampling scheme. The difference with earlier adaptive importance sampling implementations like Population Monte Carlo is that the importance weights of all simulated values, past as well as present, are recomputed at each iteration, following the technique of...

متن کامل

Multiple importance sampling revisited: breaking the bounds

We revisit the multiple importance sampling (MIS) estimator and investigate the bound on the efficiency improvement over balance heuristic estimator with equal count of samples established in Veach’s thesis. We revise the proof for this and come to the conclusion that there is no such bound and henceforth it makes sense to look for new estimators that improve on balance heuristic estimator with...

متن کامل

Importance Sampling for Reinforcement Learning with Multiple

This thesis considers three complications that arise from applying reinforcement learning to a real-world application. In the process of using reinforcement learning to build an adaptive electronic market-maker, we find the sparsity of data, the partial observability of the domain, and the multiple objectives of the agent to cause serious problems for existing reinforcement learning algorithms....

متن کامل

Honest Importance Sampling with Multiple Markov Chains.

Importance sampling is a classical Monte Carlo technique in which a random sample from one probability density, π1, is used to estimate an expectation with respect to another, π. The importance sampling estimator is strongly consistent and, as long as two simple moment conditions are satisfied, it obeys a central limit theorem (CLT). Moreover, there is a simple consistent estimator for the asym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistical Science

سال: 2019

ISSN: 0883-4237

DOI: 10.1214/18-sts668